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5. Conjugate functions

• closed functions

• conjugate function

• duality
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Closed set

a set � is closed if it contains its boundary:

G: ∈ �, G: → Ḡ =⇒ Ḡ ∈ �

Operations that preserve closedness

• the intersection of (finitely or infinitely many) closed sets is closed

• the union of a finite number of closed sets is closed

• inverse under linear mapping: {G | �G ∈ �} is closed if � is closed
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Image under linear mapping

the image of a closed set under a linear mapping is not necessarily closed

Example

� = {(G1, G2) ∈ R2
+ | G1G2 ≥ 1}, � =

[
1 0

]
, �� = R++

Sufficient condition: �� is closed if

• � is closed and convex

• and � does not have a recession direction in the nullspace of �, i.e.,

�H = 0, Ĝ ∈ �, Ĝ + UH ∈ � for all U ≥ 0 =⇒ H = 0

in particular, this holds for any matrix � if � is bounded
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Closed function

Definition: a function is closed if its epigraph is a closed set

Examples

• 5 (G) = − log(1 − G2) with dom 5 = {G | |G | < 1}
• 5 (G) = G log G with dom 5 = R+ and 5 (0) = 0

• indicator function of a closed set �:

X� (G) =
{

0 G ∈ �
+∞ otherwise

Not closed

• 5 (G) = G log G with dom 5 = R++, or with dom 5 = R+ and 5 (0) = 1

• indicator function of a set � if � is not closed
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Properties

Sublevel sets: 5 is closed if and only if all its sublevel sets are closed

Minimum: if 5 is closed with bounded sublevel sets then it has a minimizer

Common operations on convex functions that preserve closedness

• sum: 5 = 51 + 52 is closed if 51 and 52 are closed

• composition with affine mapping: 5 (G) = 6(�G + 1) is closed if 6 is closed

• supremum: 5 (G) = supU 5U(G) is closed if each function 5U is closed

in each case, we assume dom 5 ≠ ∅
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Outline

• closed functions

• conjugate function

• duality



Conjugate function

the conjugate of a function 5 is

5 ∗(H) = sup
G∈dom 5

(H)G − 5 (G))

5 ∗ is closed and convex (even when 5 is not)

Fenchel’s inequality: the definition implies that

5 (G) + 5 ∗(H) ≥ G) H for all G, H

this is an extension to non-quadratic convex 5 of the inequality

1
2
G)G + 1

2
H) H ≥ G) H
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Quadratic function

5 (G) = 1
2
G)�G + 1)G + 2

Strictly convex case (� � 0)

5 ∗(H) = 1
2
(H − 1))�−1(H − 1) − 2

General convex case (� � 0)

5 ∗(H) = 1
2
(H − 1))�†(H − 1) − 2, dom 5 ∗ = range(�) + 1
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Negative entropy and negative logarithm

Negative entropy

5 (G) =
=∑
8=1

G8 log G8 5 ∗(H) =
=∑
8=1

4H8−1

Negative logarithm

5 (G) = −
=∑
8=1

log G8 5 ∗(H) = −
=∑
8=1

log(−H8) − =

Matrix logarithm

5 (-) = − log det - (dom 5 = S=++) 5 ∗(. ) = − log det(−. ) − =
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Indicator function and norm

Indicator of convex set �: conjugate is the support function of �

X� (G) =
{

0 G ∈ �
+∞ G ∉ �

X∗� (H) = sup
G∈�

H)G

Indicator of convex cone �: conjugate is indicator of polar (negative dual) cone

X∗� (H) = X−�∗(H) = X�∗(−H) =
{

0 H)G ≤ 0 ∀G ∈ �
+∞ otherwise

Norm: conjugate is indicator of unit ball for dual norm

5 (G) = ‖G‖ 5 ∗(H) =
{

0 ‖H‖∗ ≤ 1
+∞ ‖H‖∗ > 1

(see next page)
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Proof: recall the definition of dual norm

‖H‖∗ = sup
‖G‖≤1

G) H

to evaluate 5 ∗(H) = supG (H)G − ‖G‖) we distinguish two cases

• if ‖H‖∗ ≤ 1, then (by definition of dual norm)

H)G ≤ ‖G‖ for all G

and equality holds if G = 0; therefore supG (H)G − ‖G‖) = 0

• if ‖H‖∗ > 1, there exists an G with ‖G‖ ≤ 1, G) H > 1; then

5 ∗(H) ≥ H) (CG) − ‖CG‖ = C (H)G − ‖G‖)

and right-hand side goes to infinity if C →∞
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Calculus rules

Separable sum

5 (G1, G2) = 6(G1) + ℎ(G2) 5 ∗(H1, H2) = 6∗(H1) + ℎ∗(H2)

Scalar multiplication (U > 0)

5 (G) = U6(G) 5 ∗(H) = U6∗(H/U)

5 (G) = U6(G/U) 5 ∗(H) = U6∗(H)

• the operation 5 (G) = U6(G/U) is sometimes called “right scalar multiplication”

• a convenient notation is 5 = 6U for the function (6U) (G) = U6(G/U)
• conjugates can be written concisely as (6U)∗ = U6∗ and (U6)∗ = 6∗U
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Calculus rules

Addition to affine function

5 (G) = 6(G) + 0)G + 1 5 ∗(H) = 6∗(H − 0) − 1

Translation of argument

5 (G) = 6(G − 1) 5 ∗(H) = 1) H + 6∗(H)

Composition with invertible linear mapping: if � is square and nonsingular,

5 (G) = 6(�G) 5 ∗(H) = 6∗(�−) H)

Infimal convolution

5 (G) = inf
D+{=G (6(D) + ℎ({)) 5 ∗(H) = 6∗(H) + ℎ∗(H)
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The second conjugate

5 ∗∗(G) = sup
H∈dom 5 ∗

(G) H − 5 ∗(H))

• 5 ∗∗ is closed and convex

• from Fenchel’s inequality, G) H − 5 ∗(H) ≤ 5 (G) for all H and G; therefore

5 ∗∗(G) ≤ 5 (G) for all G

equivalently, epi 5 ⊆ epi 5 ∗∗ (for any 5 )

• if 5 is closed and convex, then

5 ∗∗(G) = 5 (G) for all G

equivalently, epi 5 = epi 5 ∗∗ (if 5 is closed and convex); proof on next page
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Proof (by contradiction): assume 5 is closed and convex, and epi 5 ∗∗ ≠ epi 5

suppose (G, 5 ∗∗(G)) ∉ epi 5 ; then there is a strict separating hyperplane:[
0
1

]) [
I − G

B − 5 ∗∗(G)
]
≤ 2 < 0 for all (I, B) ∈ epi 5

holds for some 0, 1, 2 with 1 ≤ 0 (1 > 0 gives a contradiction as B→∞)

• if 1 < 0, define H = 0/(−1) and maximize left-hand side over (I, B) ∈ epi 5 :

5 ∗(H) − H)G + 5 ∗∗(G) ≤ 2/(−1) < 0

this contradicts Fenchel’s inequality

• if 1 = 0, choose Ĥ ∈ dom 5 ∗ and add small multiple of ( Ĥ,−1) to (0, 1):[
0 + n Ĥ
−n

]) [
I − G

B − 5 ∗∗(G)
]
≤ 2 + n

(
5 ∗( Ĥ) − G) Ĥ + 5 ∗∗(G)

)
< 0

now apply the argument for 1 < 0
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Conjugates and subgradients

if 5 is closed and convex, then

H ∈ m 5 (G) ⇐⇒ G ∈ m 5 ∗(H) ⇐⇒ G) H = 5 (G) + 5 ∗(H)

Proof. if H ∈ m 5 (G), then 5 ∗(H) = supD (H)D − 5 (D)) = H)G − 5 (G); hence

5 ∗({) = sup
D
({)D − 5 (D))

≥ {)G − 5 (G)
= G) ({ − H) − 5 (G) + H)G
= 5 ∗(H) + G) ({ − H)

this holds for all {; therefore, G ∈ m 5 ∗(H)
reverse implication G ∈ m 5 ∗(H) =⇒ H ∈ m 5 (G) follows from 5 ∗∗ = 5
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Example

−1 1
G

5 (G) = X[−1,1] (G)

H

5 ∗(H) = |H |

1
−1

G

m 5 (G)

1

−1

H

m 5 ∗(H)
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Strongly convex function

Definition (page 1.18) 5 is `-strongly convex (for ‖ · ‖) if dom 5 is convex and

5 (\G + (1 − \)H) ≤ \ 5 (G) + (1 − \) 5 (H) − `
2
\ (1 − \)‖G − H‖2

for all G, H ∈ dom 5 and \ ∈ [0, 1]

First-order condition

• if 5 is `-strongly convex, then

5 (H) ≥ 5 (G) + 6) (H − G) + `
2
‖H − G‖2 for all G, H ∈ dom 5 , 6 ∈ m 5 (G)

• for differentiable 5 this is the inequality (4) on page 1.19
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Proof

• recall the definition of directional derivative (page 2.28 and 2.29):

5 ′(G, H − G) = inf
\>0

5 (G + \ (H − G)) − 5 (G)
\

and the infimum is approached as \ → 0

• if 5 is `-strongly convex and subdifferentiable at G, then for all H ∈ dom 5 ,

5 ′(G, H − G) ≤ inf
\∈(0,1]

(1 − \) 5 (G) + \ 5 (H) − (`/2)\ (1 − \)‖H − G‖2 − 5 (G)
\

= 5 (H) − 5 (G) − `
2
‖H − G‖2

• from page 2.31, the directional derivative is the support function of m 5 (G):

6) (H − G) ≤ sup
6̃∈m 5 (G)

6̃) (H − G)

= 5 ′(G; H − G)
≤ 5 (H) − 5 (G) − `

2
‖H − G‖2

Conjugate functions 5.18



Conjugate of strongly convex function

assume 5 is closed and strongly convex with parameter ` > 0 for the norm ‖ · ‖

• 5 ∗ is defined for all H (i.e., dom 5 ∗ = R=)

• 5 ∗ is differentiable everywhere, with gradient

∇ 5 ∗(H) = argmax
G
(H)G − 5 (G))

• ∇ 5 ∗ is Lipschitz continuous with constant 1/` for the dual norm ‖ · ‖∗:

‖∇ 5 ∗(H) − ∇ 5 ∗(H′)‖ ≤ 1
`
‖H − H′‖∗ for all H and H′
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Proof: if 5 is strongly convex and closed

• H)G − 5 (G) has a unique maximizer G for every H

• G maximizes H)G − 5 (G) if and only if H ∈ m 5 (G); from page 5.15

H ∈ m 5 (G) ⇐⇒ G ∈ m 5 ∗(H) = {∇ 5 ∗(H)}

hence ∇ 5 ∗(H) = argmaxG (H)G − 5 (G))
• from first-order condition on page 5.17: if H ∈ m 5 (G), H′ ∈ m 5 (G′):

5 (G′) ≥ 5 (G) + H) (G′ − G) + `
2
‖G′ − G‖2

5 (G) ≥ 5 (G′) + (H′)) (G − G′) + `
2
‖G′ − G‖2

combining these inequalities shows

`‖G − G′‖2 ≤ (H − H′)) (G − G′) ≤ ‖H − H′‖∗‖G − G′‖

• now substitute G = ∇ 5 ∗(H) and G′ = ∇ 5 ∗(H′)
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Duality

primal: minimize 5 (G) + 6(�G)
dual: maximize −6∗(I) − 5 ∗(−�) I)

• follows from Lagrange duality applied to reformulated primal

minimize 5 (G) + 6(H)
subject to �G = H

dual function for the formulated problem is:

inf
G,H
( 5 (G) + I)�G + 6(H) − I) H) = − 5 ∗(−�) I) − 6∗(I)

• Slater’s condition (for convex 5 , 6): strong duality holds if there exists an Ĝ with

Ĝ ∈ int dom 5 , �Ĝ ∈ int dom 6

this also guarantees that the dual optimum is attained if optimal value is finite
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Set constraint

minimize 5 (G)
subject to �G − 1 ∈ �

Primal and dual problem

primal: minimize 5 (G) + X� (�G − 1)
dual: maximize −1) I − X∗� (I) − 5 ∗(−�) I)

Examples

constraint set � support function X∗� (I)
equality �G = 1 {0} 0

norm inequality ‖�G − 1‖ ≤ 1 unit ‖ · ‖-ball ‖I‖∗
conic inequality �G � 1 − X ∗(I)
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Norm regularization

minimize 5 (G) + ‖�G − 1‖

• take 6(H) = ‖H − 1‖ in general problem

minimize 5 (G) + 6(�G)

• conjugate of ‖ · ‖ is indicator of unit ball for dual norm

6∗(I) = 1) I + X�(I) where � = {I | ‖I‖∗ ≤ 1}

• hence, dual problem can be written as

maximize −1) I − 5 ∗(−�) I)
subject to ‖I‖∗ ≤ 1
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Optimality conditions

minimize 5 (G) + 6(H)
subject to �G = H

assume 5 , 6 are convex and Slater’s condition holds

Optimality conditions: G is optimal if and only if there exists a I such that

1. primal feasibility: G ∈ dom 5 and H = �G ∈ dom 6

2. G and H = �G are minimizers of the Lagrangian 5 (G) + I)�G + 6(H) − I) H:

−�) I ∈ m 5 (G), I ∈ m6(�G)

if 6 is closed, this can be written symmetrically as

−�) I ∈ m 5 (G), �G ∈ m6∗(I)
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