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e closed functions
e conjugate function

e duality

5.1



Closed set

a set C is closed if it contains its boundary:

xr €C, Xxp—X — xeC

Operations that preserve closedness

e the intersection of (finitely or infinitely many) closed sets is closed
e the union of a finite number of closed sets is closed

e inverse under linear mapping: {x | Ax € C} is closed if C is closed
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Image under linear mapping
the image of a closed set under a linear mapping is not necessarily closed

Example

C={(x,x) €Rf [xpxa>1}, A=[1 0], AC=Ry

Sufficient condition: AC is closed if

e ( is closed and convex

e and C does not have a recession direction in the nullspace of A, i.e.,
Ay=0, te€(C, X+ayeCforalla>0 — y=0

in particular, this holds for any matrix A if C is bounded
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Closed function
Definition: a function is closed if its epigraph is a closed set

Examples
o f(x)=-log(l-x?) withdom f = {x | |x| < 1}
e f(x)=xlogx withdom f =R, and f(0) =0

e indicator function of a closed set C:

0 xeC
+00 otherwise

oc(x) = {

Not closed
e f(x) =xlogx with dom f = R, or with dom f = R, and f(0) =1

e indicator function of a set C if C is not closed
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Properties

Sublevel sets: f is closed if and only if all its sublevel sets are closed

Minimum: if f is closed with bounded sublevel sets then it has a minimizer

Common operations on convex functions that preserve closedness

e sum: f = f1 + frisclosedif f] and f, are closed
e composition with affine mapping: f(x) = g(Ax + b) is closed if g is closed

e supremum: f(x) = sup, fo(x) is closed if each function f, is closed

in each case, we assume dom f # ()
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Conjugate function

the conjugate of a function f is

ff) = sup (y'x-f(x)

xedom f

f™ is closed and convex (even when f is not)

Fenchel’s inequality: the definition implies that
)+ f*(y) =xy forallx,y
this is an extension to non-quadratic convex f of the inequality

1 1
ExTx + EyTy > xTy
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Quadratic function

1
f(x) = ExTAx +blx+c

Strictly convex case (A > 0)

P =50 -hA (- b)

General convex case (A > 0)

) =50 =B Ay =) —c.
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Negative entropy and negative logarithm

Negative entropy

f(x) => xilogx; froy)y=> et
=1

i=1
Negative logarithm

f(x)=— ) logx; f1(y) == log(=yi) —n
i=1 i=1

Matrix logarithm

f(X)=-logdetX (domf=S87,) f*(Y)=-logdet(-Y)—n
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Indicator function and norm

Indicator of convex set C: conjugate is the support function of C

0 xeC

% _ T
s 5e(3) = supy'x

xeC

oc(x) = {

Indicator of convex cone C: conjugate is indicator of polar (negative dual) cone

0 ylx <0 VxeC

6C(y) =0-c*(y) =0c+(-y) = { +00 otherwise

Norm: conjugate is indicator of unit ball for dual norm

0 yllx<1
+oo ||yllx > 1

f(x) = [lx]] f () = {

(see next page)
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Proof: recall the definition of dual norm

Iyll« = sup xTy

l|x][<1
to evaluate f*(y) = sup, (y'x — ||x||) we distinguish two cases

o if ||y|l« < 1, then (by definition of dual norm)

ylx <||x|| forallx

and equality holds if x = 0; therefore sup, (yIx —|x|) =0

o if ||y|lx > 1, there exists an x with ||x]| < 1, x’y > 1; then

£ =y x) = llexll = 1(y"x = |lx])

and right-hand side goes to infinity if # — oo

Conjugate functions

5.10



Calculus rules

Separable sum

f(x1,x2) = g(x1) + h(x2) F 1,y2) =8 (1) + h*(y2)

Scalar multiplication (o > 0)

f(x) = ag(x) ff(y) =ag*(y/a)
f(x) = ag(x/a) () =ag*(y)

e the operation f(x) = ag(x/a) is sometimes called “right scalar multiplication”
e a convenient notation is f = ga for the function (ga)(x) = ag(x/a)

e conjugates can be written concisely as (ga)* = ag” and (ag)* = g*a
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Calculus rules

Addition to affine function

f)=gx)+a'x+b () =¢G-a)-b

Translation of argument

f(x) =g(x—b) () =bly+g*(y)

Composition with invertible linear mapping: if A is square and nonsingular,

f(x) = g(Ax) () =g(A"y)

Infimal convolution

f() = inf (g(u) +h(v)) () = 8" () + ()
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The second conjugate

)= sup xy- £ ()

yedom f*
e ™ is closed and convex
e from Fenchel’s inequality, x’y — f*(y) < f(x) for all y and x; therefore
™ (x) < f(x) forallx
equivalently, epi f C epi f** (for any f)
e if f is closed and convex, then
™ (x) = f(x) forallx

equivalently, epi f = epi /™ (if f is closed and convex); proof on next page
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Proof (by contradiction): assume f is closed and convex, and epi f™* # epi f

suppose (x, f**(x)) ¢ epi f; then there is a strict separating hyperplane:

¥

holds for some a, b, ¢ with b < 0 (b > 0 gives a contradiction as s — o)

T
[ z—x

s=f7(x)

<c<0 forall(z,s) eepif

e if b <0, define y = a/(—b) and maximize left-hand side over (z, s) € epi f:

F) =y x+f*(x) <c/(=b) <0

this contradicts Fenchel’'s inequality

e if b =0, choose y € dom f* and add small multiple of (9, —1) to (a, b):

a+ey
—€

l s | Sere(re AT w) <o

now apply the argument for b < O
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Conjugates and subgradients

if f is closed and convex, then

yeEIf(x) & xe€df(y) = x'y=fx)+rQ)

Proof. if y € d f(x), then f*(y) = sup, (y'u — f(u)) = y'x — f(x); hence

f7 () Sup (v"u = f(u))

> v'x - f(x)
= x'(w-y) - fx)+y"x
= ff+x'(v-y)

this holds for all v; therefore, x € 0 f*(y)

reverse implication x € df*(y) = y € d f(x) follows from f** = f
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f(x)=06-111(x)

df(x)
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() =1yl
X
f*(y)
1
X
-1
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Strongly convex function

Definition (page 1.18) f is u-strongly convex (for || - ||) if dom f is convex and

f(0x+(1=6)y) < 0£(x) + (1= 0)f(3) = 56(1 = O)l|x = yII

forall x,y € dom f and 6 € [0, 1]

First-order condition

e if f is u-strongly convex, then

fO) = f@+g (=0 +5ly-x|>  forallx,yedomf, g €If(x)

e for differentiable f this is the inequality (4) on page 1.19
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Proof

e recall the definition of directional derivative (page 2.28 and 2.29):

fx+0(y—x)) - f(x)
0

/ .
’ _ — f
fx,y—x) inf

and the infimum is approached as § — 0

e if f is u-strongly convex and subdifferentiable at x, then for all y € dom f,

vy < it UZOFQHOF0) = (/2001 = O)lly I = ()

6€(0,1] 7,

= )=S0 = Sly -+l

e from page 2.31, the directional derivative is the support function of 0 f (x):

g (y-x) < sup g (y-x
geaf(x)

f(xsy = x)
< ) =@ = Slly -
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Conjugate of strongly convex function

assume f is closed and strongly convex with parameter u > 0 for the norm || - ||

e f*is defined for all y (i.e., dom f* = R")

e ™ is differentiable everywhere, with gradient

Vf'(y) = argmax 'x - f(x))

e V f*is Lipschitz continuous with constant 1/u for the dual norm || - ||.:

% k / 1 /
IV (y) = VO < ;IIy—y |« forall y and y’
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Proof: if f is strongly convex and closed

e y'x — f(x) has a unique maximizer x for every y

e x maximizes y'x — f(x) ifand only if y € 8 f(x); from page 5.15
yeaf(x) =  xedf'(y)={Vf(»}

hence V f*(y) = argmax, (y'x — f(x))
e from first-order condition on page 5.17:if y € d f(x), y' € 0 f (x'):

fO) = f@)+y =2+ Sl
F) =2 6+ =) + Sl - x?
combining these inequalities shows
pllx = X117 < (=) (= x) < Ny = Y llellx = x|

e now substitute x = Vf*(y) and x’ = V£*(y)
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Duality
primal: minimize f(x) + g(Ax)
dual: maximize —g*(z) — f*(-A'7)
e follows from Lagrange duality applied to reformulated primal

minimize £ (x) + g(y)
subjectto Ax =y

dual function for the formulated problem is:
inf (f(x) +2 Ax+g(y) =2'y) = =f"(-4"2) - £"(2)
e Slater’s condition (for convex f, g): strong duality holds if there exists an X with
X € intdom f, AX € intdom g

this also guarantees that the dual optimum is attained if optimal value is finite
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Set constraint

minimize  f(x)
subjectto Ax—-b e C

Primal and dual problem

primal: minimize f(x)+ o0c(Ax — b)
dual: maximize —b'z — 0-(2) - f*(-AT7)
Examples
constraint set C support function 5*C(Z)
equality Ax=b {0} 0
norm inequality [|[Ax —b]|| <1 unit||-||-ball |z ||+
conic inequality Ax <g b -K Ok+(2)

Conjugate functions

5.22



Norm regularization
minimize f(x) + ||Ax — b||

e take g(y) = ||y — b|| in general problem

minimize f(x) + g(Ax)

e conjugate of || - || is indicator of unit ball for dual norm

g (2) = sz+5B(z) where B = {z | ||z]|« < 1}

e hence, dual problem can be written as

maximize —blz— f*(-Alz)
subjectto  ||z]l« < 1
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Optimality conditions

minimize  f(x) + g(y)
subjectto Ax =y

assume f, g are convex and Slater’s condition holds

Optimality conditions: x is optimal if and only if there exists a z such that

1. primal feasibility: x € dom f and y = Ax € dom g

2. x and y = Ax are minimizers of the Lagrangian f(x) + z/ Ax + g(y) — 2! y:
—Alz7edf(x), zedg(Ax)
if g is closed, this can be written symmetrically as

= 0f(x), Ax € 0g7(2)
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